See also:


  • Guo, M., Ruan, W., Li, R., Xu, L., Hani, S., Zhang, Q., David, P., Ren, J., Zheng, B., Nussaume, L., & Yi, K.*. (2024). Visualizing plant intracellular inorganic orthophosphate distribution. Nature Plants, 1–12. [Link]


  • Yu, J., Wang, L., Jia, X., Wang, Z., Yu, X., Ren, S., Yang, Y., Ye, X., Wu, X., Yi, K.*, & Zhu, Y. (2023). Different microbial assembly between cultivated and wild tomatoes under P stress. Soil Science and Environment, 2(1), Article SSE-2023-0010. [Link]

  • Mao, L., Zhu, R., Yi, K., Wang, X., & Sun, J. (2023). Transcriptome Analysis of Vicia villosa in Response to Low Phosphorus Stress at Seedling Stage. Agronomy, 13(7), Article 7. [Link]

  • Zhao, B., Jia, X., Yu, N.*, Murray, J.*, Yi, K.*, & Wang, E.* (2023). Microbe-dependent and independent nitrogen and phosphate acquisition in plants. New Phytologist. n/a. [Link]

  • Jia, X., Wang, L., and Yi, K.* (2023). Crosstalk between phosphate and other nutrients. In Plant Phosphorus Nutrition (CRC Press: Boca Raton). pp. 48–58. [Link]

  • Yi, K.*, Wang, L., Jia, X., & Xu, L. (2023). Modified Microalgae for Enhanced Phosphate Uptade Involving Overexpression of Psr1 and Optionally Underexpression of Ptc1 (Patent WO2023198774A1). [Link]

  • Zeng, H., Zhu, Q., Yuan, P., Yan, Y., Yi, K., and Du, L. (2023). Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. Plant, Cell & Environment n/a. [Link]

  • Yang, Y., Ren, S., Jia, X., Zeng, H., Wang, L., Zhu, Y., & Yi, K. (2023). Measurement of total phosphorus and polyphosphate in Chlamydomonas reinhardtii. Bio-Protocol, 13(11), e4692. [Link]

  • Gu, P., Tao, W., Tao, J., Sun, H., Hu, R., Wang, D., Zong, G., Xie, X., Ruan, W., Xu, G., Yi, K.*, & Zhang, Y.* (2023). The D14-SDEL1-SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice. New Phytologist, 239(2), 673–686. [Link]

  • Zhang, Y., Zhang, Q., Guo, M., Wang, X., Li, T., Wu, Q., Li, L., Yi, K.*, & Ruan, W.* (2023). NIGT1 represses plant growth and mitigates phosphate starvation signaling to balance the growth response tradeoff in rice. Journal of Integrative Plant Biology, 65: 1874–1889. [Link]

  • Wang, Z., Chen, M., Yang, H., Hu, Z., Yu, Y., Xu, H., Yan, S., Yi, K., & Li, J. (2023). A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. Nature Plants, 9(5), 699-705. [Link]

  • Dai, S., Wu, H., Chen, H., Wang, Z., Yu, X., Wang, L., Jia, X., Qin, C., Zhu, Y., Yi, K., & Zeng, H. (2023). Comparative transcriptome analyses under individual and combined nutrient starvations provide insights into N/P/K interactions in rice. Plant Physiology and Biochemistry, 197, 107642. [Link]

  • Wang, L., Jia, X.*, Xu, L., Yu, J., Ren, S., Yang, Y., Wang, K., López-Arredondo, D., Herrera-Estrella, L., Lambers, H., & Yi, K.* (2023). Engineering microalgae for water phosphorus recovery to close the phosphorus cycle. Plant Biotechnology Journal, 21, 1373–1382. [Link] [Data]

  • Fan, H., Quan, S., Ye, Q., Zhang, L., Liu, W., Zhu, N., Zhang, X., Ruan, W., Yi, K., Crawford, N. M., & Wang, Y. (2023). A molecular framework underlying low nitrogen-induced early leaf senescence in Arabidopsis. Molecular Plant, 16(4), 756–774. [Link]

  • Xu, L., Zhao, H., Wang, J., Wang, X., Jia, X., Wang, L., Xu, Z., Li, R., Jiang, K., Chen, Z., Luo, J.*, Xie, X.*, & Yi, K.* (2023). AIM1-dependent high basal salicylic acid accumulation modulates stomatal aperture in rice. New Phytologist, 238(4), 1420–1430. [Link] [bioRxiv]

  • Ding, Y., Zhou, M., Wang, K., Qu, A., Hu, S., Jiang, Q., Yi, K., Wang, F., Cai, C., Zhu, C., & Chen, Z. (2023). Rice DST transcription factor negatively regulates heat tolerance through ROS-mediated stomatal movement and heat-responsive gene expression. Frontiers in Plant Science, 14. [Link]

  • Jia, X., Wang, L., Nussaume, L., & Yi, K.* (2023). Cracking the code of plant central phosphate signaling. Trends in Plant Science, 28(3), 267–270. [Link] [Data]

  • Jia, X., Wang, L., Zhao, H., Zhang, Y., Chen, Z., Xu, L.*, & Yi, K.* (2023). The origin and evolution of salicylic acid signaling and biosynthesis in plants. Molecular Plant, 16(1), 245–259. [Link] [Data]

    News & Commentary: Wang, C., Gong, Z., & Han, G.-Z. (2023). On the origins and evolution of phytohormone signaling and biosynthesis in plants. Molecular Plant, 16(3), 511–513. [Link]


  • Zhang, K., Yang, Y., Zhang, X., Zhang, L., Fu, Y., Guo, Z., Chen, S., Wu, J., Schnable, J. C.*, Yi, K.*, Wang, X.*, & Cheng, F.* (2022). The genome of Orychophragmus violaceus provides genomic insights into the evolution of Brassicaceae polyploidization and its distinct traits. Plant Communications, 100431. [Link]

  • Guo, M., Zhang, Yuxin, Jia, X., Wang, X., Zhang, Yibo, Liu, J., Yang, Q., Ruan, W.*, & Yi, K.* (2022). Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. The Plant Cell, 34, 3319–3338. [Link] [Data]

    News & Commentary: Frungillo, L. (2022). Alternative splicing in plants: An elegant strategy to deal with an inconstant Pi. The Plant Cell, 34, 3162–3163. [Link]

  • Zeng, H., Wu, H., Wang, G., Dai, S., Zhu, Q., Chen, H., Yi, K., & Du, L. (2022). Arabidopsis CAMTA3/SR1 is involved in drought stress tolerance and ABA signaling. Plant Science, 319, 111250. [Link]

  • Li, D., Zhou, J., Zheng, C., Zheng, E., Liang, W., Tan, X., Xu, R., Yan, C., Yang, Y., Yi, K., Liu, X., Chen, J., & Wang, X. (2022). OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. Plant, Cell & Environment, 45, 1584-1602. [Link]

  • Zhang, Y., Wang, L., Guo, Z., Xu, L., Zhao, H., Zhao, P., Ma, C., Yi, K.*, & Jia, X.* (2022). Revealing the underlying molecular basis of phosphorus recycling in the green manure crop Astragalus sinicus. Journal of Cleaner Production, 341, 130924. [Link] [Data] [News]

  • Guo, M., Ruan, W., Zhang, Y., Zhang, Y., Wang, X., Guo, Z., Wang, L., Zhou, T., Paz-Ares, J., & Yi, K. (2022). A reciprocal inhibitory module for Pi and iron signaling. Molecular Plant, 15(1), 138–150. [Link] [PubMed]

    News & Commentary: Nussaume, L., & Desnos, T. (2022). “Je t’aime moi non plus": A love-hate relationship between iron and phosphate. Molecular Plant, 15(1), 1–2. [Link]


  • Amadou, A., Song, X., Huang, S., Song, A., Tang, Z., Dong, W., Zhao, S., Zhang, B., Yi, K., & Fan, F. (2021). Effects of long-term organic amendment on the fertility of soil, nodulation, yield, and seed quality of soybean in a soybean-wheat rotation system. Journal of Soils and Sediments, 21(3), 1385–1394. [Link]

  • Wang, X., Wang, B., Song, Z., Zhao, L., Ruan, W., Gao, Y., Jia, X., & Yi, K. (2021). A spatial-temporal understanding of gene regulatory networks and NtARF-mediated regulation of potassium accumulation in tobacco. Planta, 255(1), 9. [Link] [PubMed] [Data]

  • Jia, X., Wang, L., Zeng, H., & Yi, K. (2021). Insights of intra/intercellular phosphate transport and signaling in unicellular green algae and multicellular land plants. New Phytologist, 232(4), 1566–1571. [Link] [PubMed]

  • Xu, L., & Yi, K. (2021). Unloading phosphate for starch synthesis in cereal grains. Molecular Plant, 14(8), 1232–1233. [Link] [PubMed]

  • Zhang, P., Zhu, C., Geng, Y., Wang, Y., Yang, Y., Liu, Q., Guo, W., Chachar, S., Riaz, A., Yan, S., Yang, L., Yi, K., Wu, C., & Gu, X. (2021). Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions. The Plant Cell, 33(5), 1417–1429. [Link] [PubMed]

  • Wang, L., Jia, X., Zhang, Y., Xu, L., Menand, B., Zhao, H., Zeng, H., Dolan, L., Zhu, Y., & Yi, K. (2021). Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Molecular Plant, 14(5), 838–846. [Link] [Data]


  • Wang, L., Xiao, L., Yang, H., Chen, G., Zeng, H., Zhao, H., & Zhu, Y. (2020). Genome-Wide Identification, Expression Profiling, and Evolution of Phosphate Transporter Gene Family in Green Algae. Frontiers in Genetics, 11. [Link] [PubMed]

  • Guo, Z., Ruan, W., Wu, Q., Lyu, Y., & Yi, K. (2020). Vacuolar phosphate transporters account for variation in phosphate accumulation in Astragalus sinicus cultivars. The Crop Journal, 9(1), 227–237. [Link]

  • Li, R., Wang, J., Xu, L., Sun, M., Yi, K., Zhao, H. (2020). Functional Analysis of Phosphate Transporter OsPHT4 Family Members in Rice. Rice Science, 27(6), 493–503. [Link]

  • Huang, C., Xu, L., Jin-jing, S., Zhang, Z., Fu, M., Teng, H., & Yi, K. (2020). Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 19(2), 518–527. [Link]

  • Amadou, A., Song, A., Tang, Z.-X., Li, Y., Wang, E.-Z., Lu, Y.-Q., Liu, X.-D., Yi, K., Zhang, B., & Fan, F. (2020). The Effects of Organic and Mineral Fertilization on Soil Enzyme Activities and Bacterial Community in the Below- and Above-Ground Parts of Wheat. Agronomy, 10(10), 1452. [Link]

  • Xu, L., Wang, F., Li, R., Deng, M., Fu, M., Teng, H., & Yi, K. (2020). OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. Journal of Integrative Plant Biology, 62(7), 1017–1033. [Link] [PubMed]


  • Wang, X., Ruan, W., & Yi, K. (2019). Internal phosphate starvation signaling and external phosphate availability have no obvious effect on the accumulation of cadmium in rice. Journal of Integrative Agriculture, 18(9), 2153–2161. [Link]

  • Ruan, W., Guo, M., Wang, X., Guo, Z., Xu, Z., Xu, L., Zhao, H., Sun, H., Yan, C., & Yi, K. (2019). Two RING-Finger Ubiquitin E3 Ligases Regulate the Degradation of SPX4, An Internal Phosphate Sensor, for Phosphate Homeostasis and Signaling in Rice. Molecular Plant, 12(8), 1060–1074. [Link] [PubMed]

    News & Commentary: Poirier, Y. (2019) Post-translational Regulation of SPX Proteins for Coordinated Nutrient Signaling. Molecular Plant, 12, 1041–1043. [Link]

  • Xu, L., Zhao, H., Wan, R., Liu, Y., Xu, Z., Tian, W., Ruan, W., Wang, F., Deng, M., Wang, J., Dolan, L., Luan, S., Xue, S., & Yi, K. (2019). Identification of vacuolar phosphate efflux transporters in land plants. Nature Plants, 5(1), 84–94. [Link] [PubMed]

    News & Commentary: Luan, M. and Lan, W. (2019). Escape routes for vacuolar phosphate. Nature Plants, 5, 9–10. [Link]
    F1000 Prime:


  • Ruan, W., Guo, M., Xu, L., Wang, X., Zhao, H., Wang, J., & Yi, K. (2018). An SPX-RLI1 Module Regulates Leaf Inclination in Response to Phosphate Availability in Rice. The Plant Cell, 30(4), 853–870. [Link] [PubMed]

    News & Commentary: Mach, J. (2018). So Inclined: Phosphate Status and Leaf Angle in Rice. The Plant Cell, 30, 743–744. [Link]

  • Ding, Y., Gong, S., Wang, Y., Wang, F., Bao, H., Sun, J., Cai, C., Yi, K., Chen, Z., & Zhu, C. (2018). MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice. Plant Physiology, 177(4), 1691–1703. [Link]

  • Yu, Z., Dong, L., Jiang, Z., Yi, K., Zhang, J., Zhang, Z., Zhu, Z., Wu, Y., Xu, M., & Ni, J. (2018). A semi-dominant mutation in a CC-NB-LRR-type protein leads to a short-root phenotype in rice. Rice, 11(1), 54. [Link]


  • Wang, F.-Z., Chen, M.-X., Yu, L.-J., Xie, L.-J., Yuan, L.-B., Qi, H., Xiao, M., Guo, W., Chen, Z., Yi, K., Zhang, J., Qiu, R., Shu, W., Xiao, S., & Chen, Q.-F. (2017). OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Frontiers in Plant Science, 8. [Link]

  • Xu, L., Zhao, H., Ruan, W., Deng, M., Wang, F., Peng, J., Luo, J., Chen, Z., & Yi, K. (2017). ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. The Plant Cell, 29(3), 560–574. [Link] [PubMed]

  • Ruan, W., Guo, M., Wu, P., & Yi, K. (2017). Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Molecular Biology, 93(3), 327–340. [Link] [PubMed]

Before 2017

  • Qiu, L., Jiang, B., Fang, J., Shen, Y., Fang, Z., RM, S. K., Yi, K., Shen, C., Yan, D., & Zheng, B. (2016). Analysis of transcriptome in hickory (Carya cathayensis), and uncover the dynamics in the hormonal signaling pathway during graft process. BMC Genomics, 17(1), 935. [Link]

  • Guo, B., Liu, C., Li, H., Yi, K., Ding, N., Li, N., Lin, Y., & Fu, Q. (2016). Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. Journal of Hazardous Materials, 316, 77–86. Link]

  • Chen, J., Wang, Y., Wang, F., Yang, J., Gao, M., Li, C., Liu, Y., Liu, Y., Yamaji, N., Ma, J. F., Paz-Ares, J., Nussaume, L., Zhang, S., Yi, K., Wu, Z., & Wu, P. (2015). The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. The Plant Cell, 27(3), 711–723. Link]

  • Guo, M., Ruan, W., Li, C., Huang, F., Zeng, M., Liu, Y., Yu, Y., Ding, X., Wu, Y., Wu, Z., Mao, C., Yi, K., Wu, P., & Mo, X. (2015). Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 168(4), 1762–1776. [Link]

  • Shi, J., Yi, K., Liu, Y., Xie, L., Zhou, Z., Chen, Y., Hu, Z., Zheng, T., Liu, R., Chen, Y., & Chen, J. (2015). Phosphoenolpyruvate Carboxylase in Arabidopsis Leaves Plays a Crucial Role in Carbon and Nitrogen Metabolism. Plant Physiology, 167(3), 671–681. Link]

  • Deng, M., Hu, B., Xu, L., Liu, Y., Wang, F., Zhao, H., Wei, X., Wang, J., & Yi, K. (2014). OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.). Plant Molecular Biology, 86(6), 655–669. [Link]

  • Wang, Z., Ruan, W., Shi, J., Zhang, L., Xiang, D., Yang, C., Li, C., Wu, Z., Liu, Y., Yu, Y., Shou, H., Mo, X., Mao, C., & Wu, P. (2014). Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences, 111(41), 14953–14958. [Link]

  • Ivanova, A., Law, S. R., Narsai, R., Duncan, O., Lee, J.-H., Zhang, B., Van Aken, O., Radomiljac, J. D., van der Merwe, M., Yi, K., & Whelan, J. (2014). A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis. Plant Physiology, 165(3), 1233–1254. [Link]

  • Lv, Q., Zhong, Y., Wang, Y., Wang, Z., Zhang, L., Shi, J., Wu, Z., Liu, Y., Mao, C., Yi, K., & Wu, P. (2014). SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice. The Plant Cell, 26(4), 1586–1597. [Link]

  • Pires, N. D., Yi, K., Breuninger, H., Catarino, B., Menand, B., & Dolan, L. (2013). Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proceedings of the National Academy of Sciences, 110(23), 9571–9576. [Link]

  • Gao, Z., Liu, C., Zhang, Y., Li, Y., Yi, K., Zhao, X., & Cui, M.-L. (2013). The Promoter Structure Differentiation of a MYB Transcription Factor RLC1 Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light. PLOS ONE, 8(10), e77891. [Link]

  • Zhang, J., Xu, L., Wang, F., Deng, M., & Yi, K. (2012). Modulating the root elongation by phosphate/nitrogen starvation in an OsGLU3 dependant way in rice. Plant Signaling & Behavior, 7(9), 1144. [Link]

  • Zhang, J.-W., Xu, L., Wu, Y.-R., Chen, X.-A., Liu, Y., Zhu, S.-H., Ding, W.-N., Wu, P., & Yi, K.-K. (2012). OsGLU3, a Putative Membrane-Bound Endo-1,4-Beta-Glucanase, Is Required for Root Cell Elongation and Division in Rice (Oryza sativa L.). Molecular Plant, 5(1), 176–186. [Link]

  • Jang, G., Yi, K., Pires, N. D., Menand, B., & Dolan, L. (2011). RSL genes are sufficient for rhizoid system development in early diverging land plants. Development, 138(11), 2273–2281. [Link]

  • Qin, C., Yi, K., & Wu, P. (2011). Ammonium affects cell viability to inhibit root growth in Arabidopsis. Journal of Zhejiang University. Science. B, 12(6), 477–484. [Link]

  • Wang, X., Du, G., Wang, X., Meng, Y., Li, Y., Wu, P., & Yi, K. (2010). The Function of LPR1 is Controlled by an Element in the Promoter and is Independent of SUMO E3 Ligase SIZ1 in Response to Low Pi Stress in Arabidopsis thaliana. Plant and Cell Physiology, 51(3), 380–394. [Link]

  • Yi, K., Menand, B., Bell, E., & Dolan, L. (2010). A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nature Genetics, 42(3), 264–267. [Link]

  • Duan, K., Yi, K., Dang, L., Huang, H., Wu, W., & Wu, P. (2008). Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. The Plant Journal, 54(6), 965–975. [Link]

  • Menand, B., Yi, K., Jouannic, S., Hoffmann, L., Ryan, E., Linstead, P., Schaefer, D. G., & Dolan, L. (2007). An ancient mechanism controls the development of cells with a rooting function in land plants. Science, 316(5830), 1477–1480. [Link]

  • Wang, X., Yi, K., Tao, Y., Wang, F., Wu, Z., Jiang, D., Chen, X., Zhu, L., & Wu, P. (2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant, Cell & Environment, 29(10), 1924–1935. [Link]

  • Li, J., Zhu, S., Song, X., Shen, Y., Chen, H., Yu, J., Yi, K., Liu, Y., Karplus, V. J., Wu, P., & Deng, X. W. (2006). A Rice Glutamate Receptor–Like Gene Is Critical for the Division and Survival of Individual Cells in the Root Apical Meristem. The Plant Cell, 18(2), 340–349. [Link]

  • Yi, K., Wu, Z., Zhou, J., Du, L., Guo, L., Wu, Y., & Wu, P. (2005). OsPTF1, a Novel Transcription Factor Involved in Tolerance to Phosphate Starvation in Rice. Plant Physiology, 138(4), 2087. [Link]

  • Hou, X. L., Wu, P., Jiao, F. C., Jia, Q. J., Chen, H. M., Yu, J., Song, X. W., & Yi, K. (2005). Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant, Cell & Environment, 28(3), 353–364. [Link]

  • Mao, C., Yi, K., Yang, L., Zheng, B., Wu, Y., Liu, F., & Wu, P. (2004). Identification of aluminium‐regulated genes by cDNA‐AFLP in rice (Oryza sativa L.): Aluminium‐regulated genes for the metabolism of cell wall components. Journal of Experimental Botany, 55(394), 137–143. [Link]

  • Huang, G., Yi, K., Wu, Y. R., Zhu, L., Mao, C. Z., & Wu, P. (2004). QTLs for nitrate induced elongation and initiation of lateral roots in rice (Oryza sativa L.). Plant and Soil, 263(1), 229–237. [Link]

  • Zheng, B. S., Yang, L., Zhang, W. P., Mao, C. Z., Wu, Y. R., Yi, K., Liu, F. Y., & Wu, P. (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theoretical and Applied Genetics, 107(8), 1505–1515. [Link]

  • Yang, L., Zheng, B., Mao, C., Yi, K., Liu, F., Wu, Y., Tao, Q., & Wu, P. (2003). CDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 314, 141–148. [Link]

  • Chen, Q.S., Yi, K., Huang, G., Wang, X.B., Liu, F.Y., Wu, Y.R., & Wu, P. (2003). Cloning and expression pattern analysis of nitrogen-starvation-induced genes in rice. Acta Botanica Sinica, 45(8), 974-980.

  • Yang, L., Zheng, B., Mao, C., Yi, K., Wu, Y., Wu, P., & Tao, Q. (2003). Seminal, adventitious and lateral root growth and physiological responses in rice to upland conditions. Journal of Zhejiang University-SCIENCE A, 4(4), 469–473. [Link]

  • Liao, C. Y., Wu, P., Hu, B., & Yi, K. (2001). Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theoretical and Applied Genetics, 103(1), 104–111. [Link]

  • Wu, P., Liao, C. Y., Hu, B., Yi, K., Jin, W. Z., Ni, J. J., & He, C. (2000). QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theoretical and Applied Genetics, 100(8), 1295–1303. [Link]